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1. Project Objectives 

 Development of computationally efficient multiscale modeling techniques for 

characterizing the damage state of a material (including nucleation and growth): 

o Develop physics based stochastic framework to investigate fatigue damage initiation 

and growth 

o Evaluate potential sites for damage nucleation in the microstructure 

o Characterized damage evolution on complex structures 

o Formulate methodologies to characterize damage evolution at different length scales 

and stress states 

o Quantify variability of microstructural parameters that control damage 

o Incorporate multiscale modeling with virtual sensing techniques 

o Improve simulation efficiency and accuracy for online monitoring 

o Incorporate thermal creep effects to solve variable temperature issues 

 Investigation of damage detection and classification techniques for sensor integration and 

instrumentation: 

o Identify physics-based nondestructive methods to quantify damage on the microscopic 

and mesoscopic length scales 

o Perform systems-level analysis using both sensor data and physics-based models 

o Develop sensor management schemes 

o Design optimal detection and classification algorithms to analyze, classify and detect 

structural damage 

o Adapt detection and classification algorithms to ensure robustness to material or 

environment variability 

o Correlate point-source/point-receiver measurements to damage-induced isotropy 

changes in selected materials systems 

o Interpret ultrasonic results within broader framework of orientation distribution 

functions and crack-induced texture 

o Quantify effects of temperature on damage behavior and damage monitoring strategies 

 Development of an integrated structural health monitoring (SHM) and stochastic prognosis 

framework to predict failure and remaining useful life of metallic components: 

o Develop stochastic models to account for uncertainties in signals 

o Construct probabilistic models sensitive to fine scale information 

o Use modeling information for optimal sensing networks 

o Implement models for estimating residual life 

o Construct quantitative measures of damage 

o Develop stochastic models to account for uncertainties in excitation and measured 

signals 

 Testing, validation and application: 

o Characterize damage evolution and link damage parameters to sensor output 

o Validate and calibrate modeling techniques 

o Characterize damage evolution on complex sensor integrated structures 

o Apply methodology to structural hot spots  



2 

 

2. Approach and Accomplishments 

Task 1: Physics based Multiscale Modeling 

 Damage assessment and residual useful life estimation (RULE) are essential for 

aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate 

the process of damage detection and identification. Multiscale modeling is a key element in 

SHM. It not only provides important information on the physics of failure, such as damage 

initiation and growth, the output can be used as “virtual sensing” data for detection and 

prognosis. A multiscale model has been developed by bridging the relevant length scales, 

starting from micro to meso and macro (or structural) scale. Micro structural representations 

obtained from material characterization are used to define the length scales and to capture the 

size and orientation of the grains at the micro level. A microvoid model accounting for size and 

crystal orientation effects is developed. Parametric studies are conducted to estimate material 

parameters used in this constitutive model. Numerical and experimental simulations are 

performed to investigate the effects of Representative Volume Element (RVE) size, defect area 

fraction and distribution. A Statistical Volume Element (SVE) with high computational 

efficiency is also developed at the mesoscale to represent the microstructure of the material. A 

multiscale damage criterion accounting for crystal orientation effect is developed and applied for 

fatigue crack initial stage prediction. The micro scale damage information is passed from local to 

grain level, bridging microscale and mesoscale, in the form of a damage vector via averaging 

techniques. The damage evolution rule for a meso RVE, which contains several grains, is 

calculated by modifying the Kreisselmeier-Steinhauser (KS) function, which is used in multi-

objective optimization applications, to obtain lower and upper bounds of damage envelopes. A 

critical damage value is derived to complete the damage criterion for fatigue life prediction in 

Aluminum 2024 test articles.  

Material characterization and testing 

 Various mechanical testing experiments were conducted for the purpose of model 

calibration and validation. Experimental techniques for mechanical testing followed ASTM 

standards as close as possible depending on the test articles. In this case, tensile testing to 

determine basic mechanical properties under monotonic loading followed ASTM E8. The results 

of these experiments, for dogbone samples machined with load axes either parallel or 

perpendicular to the rolling direction of the Al plate used, were combined with hysteresis loops 

obtained under load control for similar samples tested following ASTM E466 and E606. Fatigue 

crack propagation experiments were conducted on CT specimens following ASTM E647 to 

measure crack growth kinetics for Al and Ti alloy samples with cracks propagating either 

parallel or perpendicular to the rolling direction of the plate. Testing on specimens with non-

standard geometries, i.e., large and small lug-joints, as well as large and small cruciforms, or 

under nonstandard testing conditions, e.g., constant ΔK experiments to propagate fatigue cracks 

in CT specimens in order to perform in-situ Digital Image Correlation (DIC) experiments, were 

performed following best practices based on the standards mentioned above as well as 

experience. Examples of the geometry of some of the samples used are shown in Figure 1. 

 Multiscale characterization of damage evolution was undertaken using a dual approach. 

First, long crack propagation was characterized to study correlations with microstructure and 

applied load. Then, crack nucleation and short crack growth were studied up to crack lengths 

where the transition to long cracks occurs. There was particular interest in finding correlations 
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between local fields ahead or around defects and the evolution of fatigue damage. In the case of 

long cracks, data analysis techniques developed during this project were used on results obtained 

elsewhere for strain fields around fatigue crack tips in pure polycrystalline nickel. The results 

indicated that the area integral of the opening strain ahead of the crack tip, the integrated strain 

εint, could be used as non-local strain parameter to correlate the fields ahead of crack tip with the 

macroscopic crack growth kinetics. There was a power–law relationship between εint and ΔK, 

where the exponent was equal to the Paris exponent of the crack growth kinetics, which meant 

that the integrated strain was proportional to the crack growth rate. Analysis revealed that the 

Paris exponent m could be predicted directly from the cyclic hardening exponent n‟ via the 

following relationship: 

𝑚 = 2  1 +
1

1+𝑛′
                                                             (1) 

where 0 < n‟ < 1. This gives 3 < m < 4, which accounts for about 50% of the observed values of   

between 1.5 and 6 for a wide variety of metallic materials. This result was obtained based on  the 

fact that strain ahead of the fatigue cracks localized along well defined slip bands in the  

equiaxed grains of the polycrystalline Ni samples used, where the integrated strain was 

proportional to the accumulated displacement in these bands. These results are helpful because 

they offer an avenue to predict crack growth kinetics based on strain fields around crack tips, 

 

Figure 1. Typical geometries used in the mechanical testing. (a) CT specimen (W=25.4 mm). 

(b) Notched dogbone (dimensions in inches). (c) Miniature cruciform sample (sample arms 

were three inches long). (d) Large lug-joint (dimensions in inches). The small lug-joint had all 

dimensions scaled down by a factor of three. 
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which can be calculated using mature methodologies like finite elements. Prediction of crack 

growth kinetics is key to model residual useful life of structures that are managed under the 

damage tolerant approach. 

 The question is whether or not these ideas would apply to engineering materials like Al 

2024-T351 and Ti-6Al-4V. In the case of the Al alloys, there is also the issue of how the 

elongated microstructure in the material would affect the strain fields. Measurements were 

undertaken at several values of ΔK at R=0.1 How crack propagation direction with respect to the 

rolling axis affected fatigue crack tip fields was investigated, as shown in Figure 2. 

a)  

b)  

Figure 2. Effect of elongated microstructure on fatigue crack tip fields for Al 2024-T351. (a) 

Crack growth perpendicular to rolling direction. (b) Crack growth parallel to rolling direction. 

CT specimens tested under constant ΔK=17 MPa.m0.5 and R=0.1 

 Results indicated that despite the clear difference in the distribution of the strain fields for 

the same  value of the applied load (i.e. the region of large strain extends further directly ahead 

of the tip for case b) the average crack growth rates were the same within experimental error. 

Experimental results were limited and full correlations between the integrated strain and the 

crack growth kinetics could not be obtained, but other information regarding crystallographic 

effects on fatigue crack growth in this material, e.g., the orientation of grains that favor crack 

kinks, was obtained. Nonetheless, the results indicate that the details of the strain distribution are 

not dependent on crack kinetics, which favors non-local parameters to describe damage. 

Multiscale damage criterion 

 The characterized material properties and observed crack nucleation and propagation are 

used for the development of multiscale modeling and damage criteria in this project. Luo et al. 

developed an energy based damage evolution rule based on the fact that fatigue cracks in metals 

tend to nucleate and propagate initially along slip planes. In this work, single crystal plasticity is 
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incorporated to the damage evolution rule so that instead of calculating accumulated fatigue 

damage along all directions in 3D space, calculation was carried out only among potential active 

slip systems. The corresponding criteria are rewritten as:  

𝑑𝐷(𝛼) =<
𝜎𝑚𝑟

𝜎0
− 1 >𝑚 (1 +

𝜎𝑛
(𝛼)

𝜎𝑓
)𝑑𝑌(𝛼) (2) 

𝑑𝑌(𝛼) = 𝛿𝜎𝑛
 𝛼 (𝑑𝜀𝑝)(𝛼) +

1 − 𝛿

2
𝜎𝑠

 𝛼 (𝑑𝛾𝑝)(𝛼) (3) 

where m and 𝛿 are material constants. It should be noted that the direction of the maximum 

material plane is a unit vector along the critical plane rather than a normal vector to the plane. 

This will be further clarified in the results section. In this work, all the simulations are focused 

on face centered cubic (FCC) crystal structures, such as copper and aluminum. A single FCC 

crystal has 12 slip systems, comprised of four slip planes, each with three slip directions. The 

damage parameter evolution of a single grain of aluminum inside the meso RVE for 12 potential 

active slip systems under uniaxial cyclic loading was presented in our previous work. The grain 

was oriented for single slip and the results showed that the critical slip plane is approximately 45̊ 

from the loading direction. 

 Using Eqs. 2 and 3, the damage parameter D
(α)

 of each slip system can be calculated. In 

order to incorporate damage information from the 12 slip systems, a damage tensor is developed 

to indicate the damage status at a particular point. In Eq. 2, the damage parameters in all 12 slip 

systems are in a strain energy density form. This makes it reasonable to assume that the damage 

tensor, which is also associated with strain energy density, is a symmetric tensor. On the other 

hand, it should reflect the directional effects for different slip systems. Thus, the relation between 

the damage tensor increment and the damage parameter increment in each slip system is 

developed as follows:  

dDk = nkdDsk , k=1 to 12 (4) 

 A damage tensor capable of predicting damage growth rate and direction of damage 

evolution simultaneously is developed by computing the maximum eigenvalue and the 

corresponding eigenvector, and shown as follows: 

  n1
ks1

k
12

𝑘=1
 dD11 +   (n1

ks2
k

12

𝑘=1
+ n2

ks1
k) dD12 +   (n1

ks3
k + n3

ks1
k)

12

𝑘=1
 dD13

+   n2
ks2

k
12

𝑘=1
 dD22 +   (n2

ks3
k +

12

𝑘=1
n3

ks2
k) dD23

+   n3
ks3

k
12

𝑘=1
 dD33 =  dDk

12

𝑘=1
 

(5) 

  A simulation for a simple test case 

is illustrated in Figure 3. The results are 

slightly counterintuitive. At some points, 

the maximum eigenvalue becomes negative, 

which has no physical meaning. 

Consequently, the damage tensor is 

decomposed into a deviatoric part and a 

hydrostatic part. Since damage is driven by 

plasticity and the damage tensor is 

developed to reflect the slip effect, the 

 
Figure 3. Simulation for simple tension on a 

pre-cracked single crystal plate. (a) Mesh of the 

plate; (b) Mises stress distribution in the plate; 

(c) Enlarged area at the crack tip. 
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deviatoric part of the damage tensor should also contain the necessary information. The 

maximum eigenvalue and the corresponding eigenvector of the deviatoric part appear to provide 

reasonable results in the context of damage accumulation. 

Mesoscale Damage Vector 

 Damage is believed driven by plastic deformation. Thus, the coupling between damage 

and elasticity is not considered. The principal idea of this approach is to develop a multiscale 

concept and formulate a damage index for an RVE based on current stress-strain distribution, 

which can represent the damage status of the RVE considering some of the microstructure 

features. Therefore, several optimization methods and averaging techniques are used to select the 

critical local damage information and transfer it to a global damage variable. For this purpose, a 

Kreisselmeier-Steinhauser (KS) function based approach is used to account for the contribution 

from all grains to the total damage accumulation at mesoscale. The KS function-based approach 

makes the current multiscale model a statistical model rather than a progressive damage model. 

It incorporates the criteria that allow contribution from the more critical grains to be reflected in 

the damage calculation. Traditionally, KS function is used in optimization applications involving 

multiple objective functions and/or constraints. From a mathematical point of view, the KS 

function represents an envelope function for a set of functions, as shown in Figure 4 and defined 

as: 

𝐾𝑆 𝑔𝑖 𝑥  = −
1

𝜌
ln[ 𝑒−𝜌𝑕𝑖(𝑥)

𝑖

] (6) 

where 𝝆  is a parameter that determines the 

proximity of the KS function to the boundary of the 

multiple objective functions 𝒉𝒊(𝒙). In this work, the 

multiple objective functions (𝒉𝒊(𝒙)) are the damage 

growths of all the grains in a meso RVE as functions 

of the time. When 𝝆 is positive, the KS function is 

close to the lower bound of 𝒉𝒊(𝒙), and when 𝝆 is 

negative, the KS function is close to the upper 

bound of 𝒉𝒊(𝒙). However, Eqn. 6 cannot be used 

directly in this application due to the nature of the 

exponential term. The modified KS function form is 

derived as: 

KS 𝑕𝑖 𝑥  =

 
 
 

 
 Max 𝑕𝑖 𝑥  +

1

𝜌
ln[ 𝑒𝜌(𝑕𝑖 𝑥 −Max  𝑕𝑖 𝑥  ]

𝑖

], upper bound

Min 𝑕𝑖 𝑥  −
1

𝜌
ln[ 𝑒−𝜌(𝑕𝑖 𝑥 −Min  𝑕𝑖 𝑥  ]

𝑖

], lower bound

  (7) 

where the max and min terms represent the gains with the highest and the lowest damage 

parameter, respectively. 

Damage parameter and direction at the mesoscale 

 Understanding the key damage parameters and the crack direction are critical for the robust 

fatigue modeling of metallic structures. At the mesoscale, a 1 mm×1 mm square is chosen as a 

meso RVE (Figure 5) based on Ritchie‟s length definition of a physically small crack [3]. The 

procedure to create meso RVE mesh comprises two steps. First, an Electron Backscattering 

 
Figure 4.  KS function. 
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Diffraction (EBSD) scan is used to acquire the 

microstructure of the material including grain 

orientations, grain shapes, and sizes. Second, a 

software package OOF (Object-Oriented Finite 

element analysis from NIST) is used to 

graphically assign the material properties to a 

microstructure image for meshing. It should be 

noted that all the meso RVEs are generated 

directly from the EBSD scans of the material so 

that all the grain information used in the FE 

simulation is maintained similar to a real 

microstructure. Grain size and shape can affect 

the stress-strain distribution in the RVE, and 

consequently can impact damage prediction to 

some extent. However, grain size and shape effects are not explicitly considered in the 

constitutive model. Traditional single crystal plasticity is used to describe the material behavior 

at the hotspot area of the structural components. Stress/strain gradient effect, which accounts for 

the size effect in the constitutive model such as the mechanism based strain gradient crystal 

plasticity (MSG-CP) or other strain gradient theories, is not considered here. In order to obtain 

the damage parameter and direction at the mesoscale, each grain in the meso RVE (Figure 5) is 

treated as a single unit. The output of each grain is a damage vector 𝐷    obtained by using an 

averaging technique. Three steps are carried out to calculate the damage vector in each grain. 

First, the deviatoric part of the damage tensor is calculated for each element within a grain. Next, 

the deviatoric damage tensors of all the elements in the grain are averaged to get a single 

averaged damage tensor in which each component of the damage tensor comes from the mean 

value of the corresponding components of all the elements‟ deviatoric damage tensor. Finally, 

the damage vector of each grain is calculated where the magnitude of the damage vector, D, is 

set equal to the maximum eigenvalue of the averaged damage tensor. The direction of the 

damage vector is defined by the corresponding eigenvector. 

 The magnitude of the damage vector, D, in each grain is a function of time. The upper and 

lower bound for D of all the grains within a meso RVE can be obtained by applying the KS 

function. The damage index for the meso RVE can be defined as: 

𝐷𝑚𝑒𝑠𝑜 = (𝜃𝐾𝑆𝑢 + (1 − 𝜃)𝐾𝑆𝑙)/𝐷𝑐  (8) 

where 𝜃 is related to the critical damage value and the total number of grains within a meso RVE. 

Physically, this parameter measures the number of grains that reaches the critical damage value, 

𝐷𝒄 . The critical damage value is also used to determine crack initiation in the meso RVE. The 

damage direction in the meso RVE can be obtained by normalizing the sum of all damage 

vectors for all grains. For prediction of fatigue crack initiation, the criteria should be related to 

the local damage parameter, i.e., the damage parameter D of each grain. When the maximum 

damage parameter of each grain within a meso RVE reaches the critical damage threshold, the 

corresponding number of fatigue cycles is treated as fatigue crack initiation and the 

corresponding grain with the maximum damage parameter is regarded as the crack initiation 

location. Moreover, the goal of using a damage index for the meso RVE, 𝐷𝒎𝒆𝒔𝒐, is to determine 

the failure of the RVE by checking whether 𝐷𝒎𝒆𝒔𝒐 reaches a value of one or not. In this work, for 

convenience of experimental validation, the failure crack length of the meso RVE is taken as 

1mm considering the size of the meso RVE and the resolution of the digital image acquisition 

 

Figure 5.  Meso RVE containing different 

oriented grains. 
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system used in the experiments. The meso RVE size is about 1mm×1mm and only the failure of 

the meso RVE is validated considering our current experimental capabilities. 

Development of statistical volume element model 

 In order to efficiently implement the multiscale analysis and prediction of fatigue life, it 

is necessary to design a model to represent material properties and mechanical responses for 

polycrystalline materials. The primary goal of developing an SVE model is to improve the 

computational efficiency and reduce the associated preprocessing effort while maintaining 

accuracy. This is achieved by simplifying grain shapes 

in the SVE model, which results in ease of assembly, 

reduction in preprocessing time, and reduction in total 

number of elements (irregular grain shapes require more 

and finer elements). The SVE model is constructed by 

assembling grains whose features are statistically 

sampled from a pool of measured experimental 

characterization data using Electron Backscatter 

Diffraction (EBSD) scan methods (Figure 6a). This 

approach provides a computationally efficient 

alternative to traditional techniques while maintaining 

simulation accuracy.  

 The key features of grains include grain 

orientation, misorientation, size, shape, aspect ratio, and 

principal axis direction. Previous statistical analysis has 

proven that there is no obvious trend in distribution of 

grain orientations in aluminum alloy 2024-T351. 

Therefore, grain orientations are assumed to be 

randomly distributed. The grain orientations used in the 

SVE model are randomly selected from an experimental 

dataset. The distribution of misorientation is chosen to 

closely match that of actual data from experimental 

observation. For Al 2024-T351, the grain size in the 

SVE model is 0.0222 mm
2
. It is close to the average 

measured value from the observation, which is 0.0225 

mm
2
. This preserves the actual density of grains in the SVE model. A rectangular grain shape is 

selected to easily assemble the grains within the square SVE. The aspect ratio is set to be 0.4, 

which is close to the actual average measured value of 0.384. The principal axis direction is 

chosen to be the same as the rolling direction of the material. The final architecture of the SVE is 

shown in Figure 6 b). Figure 7 shows three pole figures for grain orientations. The distributions 

do not exhibit any trends, and therefore are assumed to be normally distributed. It is noted that 

when formulating the SVE, the orientations were chosen at random from the pool of available 

material characterization data. The misorientation is determined from the arrangement of the 

grains in the SVE. Since the ordering can be controlled, the misorientation was chosen to closely 

match that of the experimental data shown in Figure 8 a). To accomplish this, nine randomly 

orientated SVEs were generated. A typical histogram of their misorientation is shown in Figure 8 

b).  

a)  

b)  

Figure 6. Comparison between: a) 

actual microstructure scan; b) 

constructed SVE. Colors represent 

different grain orientations. 
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a)  b)  
 

Figure 8. Statistical distribution used for misorientation feature identification a) actual data; b) 

example of generated SVE. 

 To validate the SVE based multiscale modeling approach, two measures were considered: 

hot spot location and far field distributions. To ensure the SVE is representative of the bulk 

material and mechanical responses, both measures must remain consistent with or without an 

SVE implemented into the finite element model. The SVE is expected to have a direct influence 

on the local fields near the hot spot due to local crystal plasticity effects. Without this, there 

would be no means to calculate the damage at the microscale for fatigue life estimation. Figure 9 

shows a comparison of von Mises stress distributions in the lug joint models, with and without 

an SVE. The overall contours show similar trends, i.e., the implemented SVE has a small effect 

on the 

mechanical 

response. The 

hot spot 

location 

remains 

unchanged at 

the inside 

corner radius 

below the 

loading pins 

and the 

a)  b)  c)  

Figure 7 . Flattened 3D polar plots of crystal orientation: a) {1,0,0}; b) {1,1,0}; c) {1,1,1}. 

a) b)  

Figure 9. Local von Mises stress field distribution within Lug Joint a) with SVE; 

b) without SVE. 
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magnitude remains approximately the same. The distribution of stress in the far field outside of 

the hot spot position also remains the same. With both the hot spot and far field values nearly 

unchanged, the SVE based multiscale modeling technique is proven capable of representing the 

homogeneous material. 

Simulation and experiment results: fatigue tests on lug joints 

 Uniaxial fatigue tests using lug joint specimens are conducted to validate predicted 

fatigue crack growth estimated by the developed SVE model and the damage criterion. Lug joint 

specimens are machined from a bulk Al 2024-T351 plate. The rolling direction is the same as the 

lengthwise direction of the lug joint specimen. The specimens are cyclically loaded in a servo 

hydraulic desktop test frame using a sinusoidal waveform with a load range between 489.3 N and 

4893.0 N (load ratio of 0.1) at a rate of 20 

Hz. To validate the multiscale model, the 

number of cycles necessary to achieve a 1 

mm crack is obtained experimentally. A total 

of five specimens are tested. The 

experimental results are summarized in Table 

1. Figure 10 shows the tested specimen with 

an illustrated crack angle in the defined 

coordinate system. The number of cycles to 

produce a 1 mm crack ranges from 68 K to 

98 K cycles, and the crack direction is around 

-4º or -28º. 

Table 1. Experimental results of fatigue life and crack direction. 

 For computational efficiency, a two-scale mesh is used in the multiscale analysis of 

complex structural components such as a lug joint. Preliminary stress analysis has been 

conducted by applying homogeneous elasto-plastic material model to identify the hotspot of the 

structural component in ABAQUS. The meso RVE mesh generated using the software OOF has 

been used at the hotspot of the lug joint. The rest of the lug joint is described as a homogenous 

material. The constitutive relation of this homogeneous material was obtained by homogenizing 

the meso RVE stress-strain response. First, a 

force was applied at the right edge of the meso 

RVE where plane stress elements were used. 

The UMAT based on single crystal plasticity 

has been used to describe material behavior for 

each grain within the meso RVE. Then, the 

displacement of each node at the edge was 

calculated. The corresponding homogenized 

meso RVE stress-strain response can be plotted 

Sample 1 2 3 4 5 Average 

Fatigue life (No. of cycles) 92K 98K 68K 83K 82K 84.6K 

Crack direction (degrees) -25 -34 -29 -28 -28 -28.8 

 
Figure 10. Crack formation in experimental 

samples. 

 
Figure 11.  Finite element mesh of lug 

joint. 
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based on the applied load and the 

displacement of each node. The two-

scale mesh was generated using the 

commercial software Altair Hypermesh. 

Figure 11 shows the two-scale mesh of 

the lug joint. For this work, all the 

simulations were carried out in 2D. 

Three nodes and four nodes plane 

stress elements (CPS3 and CPS4) are 

used for the FE simulations of the lug 

joint to investigate the surface of the 

specimen. Symmetric boundary 

conditions were used for simulation so 

that only half of the lug joint was analyzed in ABAQUS. The same cyclic loading condition 

which was used during the fatigue test, that is, 490 N (110 lbs) to 4900 N (1100 lbs) with a 

frequency of 20 Hz in sinusoidal waveform applied at the pin hole of the lug is used in 

simulation. Figure 12 shows the von Mises stress distribution in the lug joint under simple 

tension with the enlarged hotspot area showing the non-uniform distribution due to different 

grain orientations. 

 The developed damage tensor was implemented in the UMAT and a data processing code 

was also developed in Matlab. Damage evolution for all grains in the meso RVE is plotted in 

Figure 13 for 20 cycles. Figure 13 shows that after 10 cycles, the damage evolution in each grain 

becomes stable, which provides a basis for using a linear fit to extrapolate the damage evolution 

in individual grains. It should be noted that, the focus of this work was to propose a new 

methodology for fatigue damage prediction taking into consideration microstructure features. 

Therefore, all simulations conducted and presented here are under constant cyclic loading. Thus, 

the damage evolution in each grain becomes almost linear after 10 cycles. For random loading 

conditions, future work will address building a relationship between the applied load and the 

damage growth in individual grains. Figure 14 a) shows the damage parameter of all the grains 

within the RVE at time, t=1.2667s, and Figure 14  b) presents the enlarged area of the RVE and 

highlights the crack initiation area where the damage parameter was maximum. This critical 

grain is labeled as grain no. 9, shown in Figure 14 a). The results confirm that the critical grain in 

the RVE is located close to the free surface at the shoulder of the lug joint.  

a)       b)  

Figure 13. a) Damage evolution in each grain for 20 cycles, b) An example shows that damage 

grows linearly after 10 cycles in each individual grain. 

 

Figure 12.  Mises stress distribution of lug joint. 
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 A Matlab program was developed for 

post-processing of finite element results. 

Figure 15 shows the microstructure and the 

grain size distribution of the meso RVE used. 

Figure 16 presents the normalized damage 

parameter for the meso RVE versus the 

number of cycles. The simulation data fit a 

quadratic polynomial well, which is intuitive 

given that as more grains reach the critical 

damage value, the accumulation of damage in 

the meso RVE accelerates. The estimated 

number of cycles until failure in the meso 

RVE, i.e., when the normalized damage index 

of the meso RVE reaches an unit value, is 

208Kcycles. The result of the simulation 

matches well with the experimental results of 

samples 1-3 shown in Table 2. The 

corresponding eigenvector, an indicator of the 

potential damage direction, is calculated by 

the weighted average method from all the 

grains. A histogram showing the frequency of 

damage occurrence along a particular 

direction is presented in Figure 17 a). The 

figure indicates that the directions of 

maximum damage in the RVE, obtained from 

simulation, are approximately -30°and 52 °. 

The experimental crack directions from lug 

joint fatigue tests are shown in Figure 17 b). 

Comparing the simulation results with the 

experimental data, one of the potential damage 

directions (-30°) obtained from the simulation 

matches the experiments well. Further 

simulations were conducted to verify the 

model and consider uncertainty of the meso 

RVE. The same lug joint with only one meso 

RVE located at the shoulder was used. The 

meso RVEs, however, contain different 

oriented grains and different number of grains. 

As mentioned before, all meso RVE sizes are approximated as 1mm×1mm. The average grain 

size and estimated failure of meso RVEs are shown in Table 2. It can be observed that the 

estimation of RVE failure in simulation 5 is close to the fatigue test results obtained in sample 4. 

Variability in the simulation results indicates that the fewer number of cycles required in sample 

4 to obtain a 1mm crack could be due to different oriented grains. 

 The five simulations suggested that grain orientation will affect the estimation of RVE 

failure. The common feature in all five simulations is that the RVEs used in the simulations are 

generated from the scans taken from the same Al alloy plate. However, those scans are not 

a)  

b)  

Figure 14. a) Damage distribution in RVE for 

all grains, b) Location of critical grain. 

 

Figure 15.   Microstructure and grain size 

distribution of the meso RVE 

 
Figure 16.  Normalized damage index for 

meso RVE vs. No. of cycles 
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directly taken from the lug joint samples, which 

results in the variability of the input data for the 

model. To prevent this variability, an RVE which 

is directly scanned from the lug joint shoulder is 

created. The procedure involves obtaining four 

scans from both shoulders of the lug joint on both 

sides and conducting a fatigue test on the same 

lug joint sample to determine which scan should 

be used in the validation simulation. The lowest 

number of cycles recorded was 33k cycles to 

initiate a 1.5 mm crack. 

 The simulation result of RVE failure is 

found to be 12.4 k cycles. Considering the 

number of cycles required for short crack 

propagation up to 1.5 mm that can be obtained 

experimentally, the author believes the simulation 

result is acceptable. The direction of crack 

propagation at the early stage of fatigue test is 

around -53° with respect to the horizontal 

direction. Results show two major potential crack direction bands. One is from approximately -

58° to -43° and the other is from 60° to 85°. The experiment result shows the crack propagated 

along one of the potential crack direction ranges obtained from the simulation, indicating that the 

model can predict potential crack directions. 

Table 2. Average grain size and estimation of failure for different meso RVEs 

Task 2: Methods for In-Situ Interrogation and Detection 

 Damage detection and characterization is critical for the development of an integrated 

SHM system. An adaptive learning baseline-free structural damage estimation method has been 

developed that is robust to variability in environmental and operating conditions. Physics-based 

damage growth models have been integrated with sensor signal processing algorithms for 

estimating progressive structural damage effectively using sequential Monte Carlo techniques. 

Within this framework, performance bounds have been evaluated and optimal sensor scheduling 

and automatic measurement screening approaches were designed and implemented to further 

maximize the damage estimation performance. The applicability of compressive sensing 

techniques was studied for substantially reducing structural data volume in order to save on 

storage, transmission, and processing costs. A transfer learning methodology was proposed that 

utilizes knowledge transfer between multiple distributed sensors in order to increase structural 

damage classification accuracy. Information obtained from a deterministic physics based 

multiscale model was utilized to formulate a new statistical model for describing small crack 

Lug Joint 

Simulations 

Simulation 

1 

Simulation 

2 

Simulation 

3 

Simulation 

4 

Simulation 

5 

Average grain size 

(μm) 
208.591 191.866 190.266 242.684 191.082 

Estimate failure of 

RVE (K cycles) 
208 184 298 177 116 

a)  

b)  

Figure 17.  a). Histogram of damage 

direction in RVE; b). Cracking directions 

from fatigue tests. 
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growth in aluminum 2024 T351. Vibration based and laser ultrasonic based methods were also 

studied in this project. 

Adaptive learning based structural damage estimation 

 A novel adaptive learning structural damage detection and estimation methodology has 

been developed for robustness to variable or changing conditions. Variable environmental and 

operating conditions are known to be a major challenge in the design of reliable structural health 

monitoring (SHM) systems because both damage evolution and sensor data are often strongly 

influenced, for example, by changes in temperature, geometry or configuration. Unlike 

conventional statistical methods that can be limiting in highly complex and rapidly changing 

environments, the adaptive learning approach uses advanced stochastic modeling to continuously 

evolve with the time-varying environment. 

 Specifically, Dirichlet process (DP) mixture models are utilized to automatically adapt to 

structure within the data. The DP mixture model provides for a growing, possibly infinite 

number of mixture components or clusters/classes, a finite number of which are manifested 

within the given data (time-frequency probability density function (PDF) statistical distance 

features extracted from sensor signals). The appropriate number of mixture components and 

mixture proportions, and the mixture distribution parameters, are learned adaptively from the 

data. The learning of DP mixture model parameters is performed efficiently using Markov Chain 

Monte Carlo (MCMC) techniques. The adaptively identified components or classes can then be 

linked to different types of damage within a structure or different possible variations in the 

external environment for the same type of damage. The damage state inference is performed 

using a Bayesian filter that combines the adaptive data model with a physics based progressive 

damage model. The main advantage of this approach is that no baseline training data is required 

and signals can be classified on the fly to new (previously unseen) damage classes, yielding an 

adaptive and effective approach for online SHM. Figure 18 shows a block diagram of the 

adaptive learning based structural damage estimation method. 

 The proposed adaptive learning technique has been validated for the detection of fatigue 

damage in metallic structures under variable conditions. Figure 19 a) shows a comparison of the 

true and estimated crack lengths using Lamb wave measurements from an aluminum compact 

 
Figure 18. Block diagram of the adaptive learning based structural damage estimation 

method. 
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tension (CT) specimen subjected to variable-amplitude fatigue loading. Figure 19 b) shows the 

true and estimated fatigue crack lengths using impedance measurements from an aluminum lug 

joint specimen under varying temperature conditions. The results show good damage estimation 

performance and robustness to variability. It should be noted that in the lug joint experiments, 

the temperature was changed only during sensor data acquisition and not while actual fatiguing 

of the sample. More extensive experiments are underway to test the adaptive method‟s 

performance under realistic temperature variability scenarios. 

a) b)  

Figure 19. Adaptive learning results for fatigue crack damage estimation in metallic structures 

under variable conditions. (a) aluminum CT specimen subjected to variable-amplitude loading, 

(b) aluminum lug joint specimen under varying temperature conditions. 
 

Progressive structural damage estimation using sequential Monte Carlo techniques 

 A new state-space framework based method has been developed for progressive 

structural damage estimation using sequential Monte Carlo techniques. The method integrates 

physics-based models with information from sensor measurements for effectively estimating and 

tracking an evolving damage state using sensor data collected online. The state-space 

formulation is used to model (a) the damage evolution process (assumed Markov), and (b) the 

measurement-damage relationship. The damage state estimation is then carried out in a Bayesian 

setting. When the state and measurement dynamics are linear and the noise can be modeled as 

Gaussian, the solution can be computed using the Kalman filtering technique. However, in the 

damage estimation problem the underlying physical process is generally nonlinear and non-

Gaussian, and the tracking problem is solved using sequential Monte Carlo techniques, e.g., 

particle filter (PF). In the particle filter, the desired posterior probability distribution over the 

state variables is summarized using samples (particles and weights). This representation is then 

updated continuously to include the information provided by recent measurements. 

 The proposed method was implemented for the estimation of fatigue-induced crack 

damage in an aluminum CT specimen under cyclic loading. The system model was obtained 

from fracture mechanics based on Paris‟ Law. The stochastic relationship in the measurement 

model was obtained from hidden Markov modeling (HMM) of joint time-frequency (TF) 

features extracted from the PZT sensor signals using the Matching Pursuit Decomposition (MPD) 

algorithm. Figure 20 shows results of estimating the crack length in the CT specimen using the 

proposed particle filtering method with discrete and continuous measurement density HMMs. It 

can be seen that the algorithm‟s performance is very good, with only a few millimeters of error 

in the estimated crack lengths with respect to the experimentally observed values. 
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a) b)  

Figure 20. Fatigue crack estimation in a CT specimen using sequential Monte Carlo (particle 

filtering). (a) discrete HMMs, (b) continuous HMMs. 

Compressive sensing of structural data 

 Compressive sensing (CS) techniques have been investigated in order to reduce the 

amount of structural monitoring data collected for achieving savings in storage, transmission and 

processing related costs. Specifically, it was observed that the sparsity of the dispersive Lamb 

wave measurements in time-frequency and time-scale bases can be exploited to substantially 

reduce data volume at the sensing stage. In our experiments, we considered PZT sensor signals 

recorded from a bolted aluminum plate. About only 20% of the samples of a signal were first 

randomly selected as measurements and these compressively sensed noisy measurements were 

then decoded by solving a Basis Pursuit Denoising convex optimization problem (with a wavelet 

packet basis used for the signal representation). It was shown that the structural signals could be 

accurately reconstructed for subsequent processing, as see Figure 21 below. 

a)     b)  

Figure 21. Compressive sampling of a PZT sensor signal recorded from a bolted aluminum plate. 

(a) original complete signal and 20% randomly selected samples, (b) original signal and CS 

recovered approximation. 

Adaptive measurement selection for progressive damage estimation 

 Noise and interference in sensor measurements degrade the quality of data and have a 

negative impact on the performance of structural damage diagnosis systems. We have designed a 

novel adaptive measurement screening algorithm to automatically select the most informative 

sensor measurements and use them for fast and accurate structural damage estimation within the 

SMC framework. Our approach is motivated by the data association concept which has been well 

studied and used successfully in the problem of radar based target tracking. The idea is to 
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adaptively screen the sensor measurements based on their plausibility given the most recent 

damage state estimates and previous measurement history. This is determined by evaluating the 

measurement likelihoods under the predicted measurement distribution. 

 Two approaches were considered for realizing the adaptive measurement selection 

method: the Maximum Likelihood (ML) approach and the Minimum Mean-Squared Error 

(MMSE) approach. The ML approach selects the current single most likely measurement from 

the set of all available measurements and uses it to estimate the damage state. The MMSE 

approach computes the damage state estimate as a weighted average of the estimates obtained 

using each of the measurements individually, with the weights being proportional to the 

likelihood of the respective measurements; unlike the ML approach, it puts more emphasis on 

measurements which are more likely and allows information from multiple measurements to 

contribute to the damage state estimate. Both approaches effectively reject noisy and/or 

implausible measurements, and in doing so, screen for outliers and retain only the most 

informative measurements. 

 The proposed approach was applied to further increase the performance of the particle 

filtering progressive fatigue damage estimation method for tracking crack length in an aluminum 

CT specimen using noisy PZT sensor measurements. Discrete HMMs were utilized to model TF 

features extracted from the sensor signals using the MPD algorithm. Figure 22 shows the results 

obtained with noise suppression using ML and MMSE based adaptive measurement selection 

approaches and using randomly selected single and multiple measurements. It can be seen that 

suppressing the use of noisy measurements with the proposed MMSE based adaptive 

measurement selection algorithm helped to significantly improve the damage estimation 

performance, demonstrating up to 80% reduction in the MSE for estimating crack length. The 

ML based adaptive measurement selection employs hard decisions and is somewhat sensitive to 

prediction errors; in this example it did not deliver the as much improvement in the performance 

as the MMSE approach. 

a)       b)  

Figure 22. Progressive damage estimation in a CT sample without and with noise suppression 

using adaptive measurement selection. (a) crack length estimation results, and (b) comparison of 

mean squared error. 

Structural damage classification with insufficient data using transfer learning 

 In many structural damage classification scenarios, a large amount of „training data‟ may 

be required for learning statistical parameters, which is often difficult to obtain and leads to 

compromised system performance under these data-scarce conditions. However, in many 

applications a modest amount of data may be available from a few different but related 

experiments. We have developed a new structural damage classification method that makes use 
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of statistics from related tasks to improve 

the classification performance on a data set 

with limited training examples. The 

approach is based on the framework of 

transfer learning (TL), which provides a 

mechanism for knowledge transfer between 

related learning tasks (from a „source‟ 

domain to a „target‟ domain) and thereby 

reduces the training burden without 

significantly compromising on the learner‟s 

performance.  

 The proposed transfer learning based damage classification method shares model 

statistics learned from multiple distributed sensors to achieve significant performance increase in 

classifying fatigue damage in an aluminum lug joint specimen using a limited amount of PZT 

sensor data. Specifically, 

data was collected using 

four sensors, but 

sufficient training data 

was available only from 

one sensor which was 

considered as the source 

domain. The remaining 

three sensors with 

limited amount of data 

served as the target 

domain. Figure 23 

shows the lug sample 

along with the sensor 

placement and TL 

domains Data was 

collected using the PZT 

sensors for several 

damage stages between 

2k and 260k cycles of 

fatigue loading. A 

maximum-likelihood 

time-frequency HMM 

based classifier was 

employed and the 

available training data 

for each damage 

condition (fatigue cycles) 

was used to estimate the 

model parameters. In the 

source domain, 50 

signals were used from 

 

 

 

Figure 24. Fatigue damage classification in an aluminum lug joint 

specimen using PZT sensor data without and with the use of 

Transfer Learning. 

 

 

Figure 23. Transfer Learning domains used for 

fatigue damage classification in the lug 

specimen. 
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each class for training. On the other hand, only 5 signals were used for training in each of the 

target domains. The proposed TL based structural damage classification method was then 

applied. Figure 24 shows a comparison of the fatigue damage classification results without and 

with the use of TL. Our results confirm the penalty of using inadequate amount of training data 

for the damage classification. As seen from the plots, there is a dramatic improvement in damage 

classification performance when TL is used to share knowledge between the source and target 

domain sensors. 

Integration of physics based multiscale models into progressive damage estimation framework 

 The growth behavior of microstructure level cracks (cracks of size smaller than 1mm) is 

different from that of macro level cracks and cannot be accurately modeled using the simple 

Paris‟ Law relationship. While several deterministic small crack growth models exist in the 

literature, a probabilistic model is desirable in order to be able to account for the uncertainty in 

crack growth due to randomness at the microstructure level. In our work, data on crack growth in 

the micro length scales obtained from the physics based multiscale model developed in Dr. 

Chattopadhyay‟s group is being utilized to design a new statistical model for describing small 

crack growth in aluminum 2024 T351. 

 The proposed statistical model characterizes the small crack growth process using two 

distinct growth states: normal growth and accelerated growth. The normal and accelerated 

growth states are modeled using linear growth regimes with independent truncated Gaussian and 

Gamma distributed random variables for crack growth rate and fatigue life cycles. The 

parameters in the model are estimated with maximum-likelihood estimation (MLE) using data 

obtained from FEM simulations of the physics based multiscale model with several Al 2024 

T351 microstructure instantiations. The model can be adapted for use within the sequential 

Monte Carlo based progressive damage estimation framework in the small crack growth regime. 

Vibration-based health monitoring with temperature variations 

 Vibration-based damage detection has been considered as a useful tool for damage 

detection, classification, and in-situ monitoring. Vibration based damage detection methods 

considering the temperature effects have been studied in this project. The beam studied here, as 

shown in Figure 25 a), is assumed to be a uniform Euler-Bernoulli beam actuated with a PZT 

actuator, undergoing temperature variations. It is also assumed to have a single fatigue crack. 

The crack is treated as a localized reduction in the stiffness and modeled as a massless rotational 

spring at the location of the crack. The beam is then considered to be of bisections connected by 

this spring, as shown in Figure 25 b). The beam is assumed to have a length L, width b and 

thickness 𝑕𝑏  and a uniform cross section along the beam. For simplicity in the modeling, the 

single fatigue crack is assumed to be non-breathing during the deformation of the beam. The 

surface-bonded piezoceramic (PZT) actuator is 

assumed to have the length of 𝐿𝑎 , width of b and 

thickness of 𝑕𝑎 , attached at the 𝑥1𝑎  from the start of 

the beam. 

 Change in the temperature distribution inside 

the beam, 𝑇 𝑥, 𝑦, 𝑧, 𝑡 , affects the vibratory 

characteristics of this system through alterations of 

material properties, like modulus of elasticity, as 

well as causing thermal stresses inside the beam. 

Thermal-induced changes of the dimensions of the 

 
Figure 25. Beam with a single fatigue 

crack under PZT actuation and 

temperature variations. 
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beam through material expansionis negligible compared to the effects on the material properties 

and thermal stresses and therefore have not been considered in the present modeling. 

 Temperature-dependent shift in the frequency is tabulated for an Euler-Bernoulli beam of 

length 9.45″, width 0.75″ and thickness 0.18″, made of aluminum (mass density of 168.56 

lb/ft
3
(2700 kg/m

3
)) in Table 3. Temperature is varied from 0°C (32°F) to 220°C (428°F) and the 

first natural frequency of the beam is calculated for the changing modulus of elasticity in this 

range of temperature. These frequencies are calculated based on simple vibrations modeling of 

an Euler-Bernoulli beam, considering only the first mode of vibrations. 

Table 3. Shift in the first natural frequency of an aluminum beam due to the temperature-varying 

modulus of elasticity for different boundary conditions. 
Boundary Condition Cantilever Pinned-Pinned Clamped-Pinned Clamped-Clamped 

Frequency Shift (Hz/°C) 0.0188 0.0529 0.0828 0.1199 

 For a specific input voltage applied on the PZT and a known temperature distribution, 

generalized coordinates of the system will be derived once the matrices of mass, stiffness, 𝑃  𝑇 𝑡  
and𝜂  are formulated. The values of these matrices depend on the material properties of the beam 

(which are functions of the temperature inside the beam) and the thermal moments inside the 

beam, as well as the choice of admissible functions of 𝑋𝑖 𝑥 . 
 In order to account for the presence of the crack, the available mode shapes of the 

cracked beam are not applicable as they are not twice differentiable. Therefore, a new 

formulation of the mode shapes of the cracked beam is proposed and modeled in the present 

work. In the proposed modeling approach, Rayleigh-Ritz approximation is applied in 

formulating approximate, twice differentiable mode shapes of the cracked beam. 

 In the Rayleigh-Ritz method, mode shapes of the vibrating beam are approximated as 

 𝑋(𝑘) 𝑥 =  𝑐𝑖
(𝑘)

𝜙𝑖(𝑥)

𝑛

𝑖=1

 (9) 

where𝑐𝑖
(𝑘)

‟s are unknown, constant Ritz coefficients and 𝜙𝑖 𝑥  are the admissible functions, 

satisfying boundary conditions of the system. In the proposed approximation, the crack is still 

assumed to be treated as a massless rotational spring with the resultant compliance of 𝐶𝑐 =
11.85𝑕𝑏

𝐸𝑏 𝐼𝑏
 𝑎𝑐 𝑕𝑏  2 . When using the mode shapes of the un-cracked beam as the admissible 

functions for Rayleigh-Ritz approximation, the maximum strain energy needs to be modified to 

account for the loss of energy due to the presence of the crack. This energy loss is proportional to 

the amount of the added flexibility due to the presence of crack/rotational-spring.  

 For the beam with a uniform cross sectionthe modified stiffness and mass matrices for the 

transverse vibrations of the beam after considering the effect of presence of the crack are 

modified as 

 

𝑘𝑖𝑗 =  𝐸𝑏𝐼𝑏𝜙
𝑖 ′′  𝑥 𝜙𝑗 ′′  𝑥 𝑑𝑥

𝐿

0

− 𝐸𝑏𝐼𝑏𝐶𝐸 𝜙
𝑖 ′′ (𝑥𝑐)  𝜙𝑗 ′′ (𝑥𝑐) 

𝑚𝑖𝑗 =  𝜌𝑕𝑏𝑏𝜙
𝑖 𝑥 𝜙𝑗 (𝑥)𝑑𝑥

𝐿

0

 (10) 

 Therefore the approximation problem will be reduced to finding eigenvalues and 

eigenvectors of the following matrix equation 
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   𝑘 −  𝜔(𝑘) 
2

[𝑚] 𝑐 (𝑘) = 0   (11) 

where𝑐 (𝑘) =  𝑐1
(𝑘)

, 𝑐2
(𝑘)

, … , 𝑐𝑛
(𝑘)

 
𝑇

 is the vector of Ritz coefficients. Once 𝑐 (𝑘) vector is found 

the mode shapes of the cracked beam, 𝑋(𝑘) 𝑥 , can be calculated. 

 By performing numerical analysis, it is shown that the proposed mode shape formulation 

provides a close approximation of the mode shapes of the vibrating cracked beam compared to 

the available cracked beam modeling approaches. 

 For each depth and position of the crack, the modeling approach proposed in the present 

work is used for approximating the resonant frequencies of the free vibrations of the beam. These 

frequencies of the first three modes of vibrations versus the crack position along the beam are 

plotted in Figure 26 - Figure 28 and compared to the available cracked beam modeling 

approaches. In order to have a better picture of the results, graphs for only two crack depth ratios 

of  𝑎𝑐 𝑕𝑏 = 0.2 and 𝑎𝑐 𝑕𝑏 = 0.4 are shown in these figures. In these graphs: a) long dash line 

represents frequencies of the reference (available) modeling approach for crack depth ratio of 

𝑎𝑐 𝑕𝑏 = 0.2, b) dash dot line represents frequencies of the proposed modeling approach for 

crack depth ratio of 𝑎𝑐 𝑕𝑏 = 0.2, c) dash line represents frequencies of the reference modeling 

approach for crack depth ratio of 𝑎𝑐 𝑕𝑏 = 0.4 and d) solid line represents frequencies of the 

proposed modeling approach for crack depth ratio of 𝑎𝑐 𝑕𝑏 = 0.4. 

   
Figure 26. Resonant frequency of the 1

st
 mode of the beam vs. crack position along the beam for 

a) simply supported and b) fixed-fixed boundary conditions. 

  b) a) 
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Figure 27. Resonant frequency of the 2
nd

 mode of the beam vs. crack position along the beam for 

a) simply supported and b) fixed-fixed boundary conditions. 

    
Figure 28. Resonant frequency of the 3

rd
 mode of the beam vs. crack position along the beam for 

a) simply supported and b) fixed-fixed boundary conditions. 

Fatigue damage characterization using laser ultrasonic methods 

 Laser ultrasonics deals with the generation and detection of ultrasound in a solid, liquid, 

or gaseous medium using a laser light. This type of system is particularly attractive to 

nondestructive structural and materials characterization of solids due to the nature of non-

contact, non-destructive, and in-situ measurements. A laser ultrasonic based SHM method has 

been developed in this project. To isolate shear stiffness anisotropy variations, entirely new laser 

ultrasonic methods based on laser line sources to provide linearly polarized shear waves have 

been developed.  These methods have been used to assess material anisotropy using shear wave 

birefringence measurements in rolled materials and can be used to quantitatively isolate various 

orientation distribution coefficients. The simplicity of this approach and its robust character 

provide entirely new directions for ultrasonic sensing of fatigue damage in metal alloys. 

Successful implementation of this experimental technique has been used to measure inherent 

material anisotropy in aluminum and copper alloys.  

b) a) 

  b) a) 
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Experimental equipment, set up and procedures 

 Some of the waveform variations recorded with the previous testing methods used in the 

program on lug joints indicated that changes were occurring in the material‟s elastic properties in 

the fatigue damaged region.  Based on analysis of a subset of these data sets, we decided to 

investigate shear anisotropy variations that might be related to fatigue damage processes.  To 

isolate these variations, we developed new methods using linearly polarized shear waves to 

measure wave speed variations as a function of material anisotropy.  However, since most rolled 

plate materials exhibit a baseline anisotropy related to preferred grain orientation, a preliminary 

study was performed to characterize shear birefringence effects related to rolling-induced 

anisotropy.   

 
Figure 29. Ultrasound generated by laser line source with contacting transducer for detection. 

Orienation of sample relative to the line source is also shown.  

 

 A pulsed laser was used for ultrasonic generation with the beam focused into a narrow 

line.  To create the line, a double concave lens and double convex lens were used to expand and 

collimate the beam, while a cylindrical lens focused the beam to a line (Figure 29).  The line 

source forces a linear polarization of the shear wave which is perpendicular to the orientation of 

the line. The line source is centered on the sample which is mounted to a rotational stage such 

that 0 and 180 degrees are interchangeable.   Using the experimental geometry shown in Figure 

29, all ultrasonic modes have a common direction of propagation such that rotation of the sample 

does not affect the longitudinal wave since its polarization and propagation directions are 

unchanged (both are in the through-thickness direction of the specimen).  In the first series of 

measurements using this experimental approach, the conical transducer was used for detection to 

quickly characterize the system and generate data.  The transducer was mounted on the back side 

of the specimen using a gel couplant so that the aperture area was centered and the sample could 

be easily rotated over the transducer while still making sufficient contact.  Data were collected at 

15 degree intervals on brass and copper (2”x2”x0.1875” square, rolled plates) as well as an 

aluminum alloy (2”x2”x0.25” square, rolled plates).  Although brass and copper were not the 

focus of this study, they were added to the sample set as materials with known texture and 

detectable anisotropic characteristics.  Initial measurements indicated that rolling-related 

anisotropy could be sensed but quantitative measurements were not obtained.  Consequently, it 
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was necessary to implement interferometric detection (Figure 30) to provide highly repeatable, 

high fidelity measurements.  

 
Figure 30. Laser line source for ultrasonic generation and interferometer for measuring 

displacement, shown with the orientation of the sample relative to the line source. 

 Laser line source experiments 

using the interferometer required that the 

specimen be mounted on the rotational 

stage so that the specimen faces were 

perfectly perpendicular to the 

interferometric beam to minimize the 

angle of reflectance from the incident 

beam path.   The interferometric beam 

was focused on the opposite side of the 

specimen from the laser source and was 

centered so that interrogation of the 

region remained constant as the 

specimen rotated. The same data 

acquisition methods were used that were 

described for the transducer.  

 

Laser line source results  

 Wave speeds calculated from laser line source experiments are tabulated below.  Each of the six samples tested were initially oriented with the rolling or extrusion direction at zero degrees and rotated in fifteen degree intervals.   

Plots of shear wave speed as a function 

of sample orientation for each sample are 

shown in Figure 31 and Figure 32.  

 Brass and copper samples were 

tested to provide insight to the operation 

of the laser line source experiment.  
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Figure 31. Series of copper alloys.  A double y-axis 

plot is used to show extruded brass velocities are 

faster than the rolled plates of copper and brass.  

 
Figure 32. Series of aluminum alloys from laser line 

source-in/laser-out method. Al2024 exhibits 

measureable anisotropy, while 6061 appears to 

maintain isotropic behavior. 
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Brass is known to exhibit high, rolling-induced anisotropy which is well-documented in the 

literature and can be used to establish the ability of this technique to assess anisotropy.  For 

brass, a greater than 4.5% difference in shear wavespeed between maximum and minimum was 

measured with an uncertainty of +/-0.3%.     

 Figure 32 displays velocity results for aluminum alloys 2024 and 6061.  For Al2024 (in 

both rolled plate and extruded bar form) maximum velocities can be clearly noted at 0 and 180 

degrees from the rolling direct, while Al6061 is isotropic with respect to shear wave polarization.  

Overall, uncertainty for extracting shear wave speeds was +/-0.3% while the maximum variation 

in wave speed for Al2024 was 1.5% - significantly above the measurement uncertainty.  

Task 3: Fatigue Life Prediction Using Hybrid Prognosis 

 Current practice in fatigue life prediction is based on assumed initial structural flaws 

regardless of whether these assumed flaws actually occur in service. Small deviations of the 

initial conditions and model parameters may generate large errors in the expected dynamical 

behavior of fatigue damage growth. This project develops an integrated approach of SHM and 

adaptive prognosis model that not only estimates the current health, but can also forecast the 

future health and calculate RULE of an aerospace structural component with high level of 

confidence. 

Generalized Bayesian data driven model for damage prediction 

 The lack of general 

applicability of available physics 

based crack growth model is due to 

the complex dependency of crack 

propagation on different factors such 

as variability due to (i) material (e.g., 

microstructure) (ii) geometric 

complexity (iii) manufacturing 

process (e.g., heat treatment, cold 

deformation) (iv) loading (v) 

environmental effects (e.g., 

temperature and humidity). To 

incorporate these factors in a damage 

propagation model, a generalized Bayesian probabilistic framework can be employed. The 

Bayesian framework is a data driven approach. The schematic of a probabilistic Bayesian 

framework for future step damage state forecasting is shown in Figure 33. The goal of a 

probabilistic Bayesian forecasting approach is to compute the posterior distribution of an 

unknown target, i.e., to predict 𝑓 𝑦𝑛+1 𝐷 = {𝑥𝑖,𝑦𝑖}𝑖=0,…𝑛−1,𝑛 , 𝑋𝑛−1  where 𝑦𝑛+1 represents either 

the crack length 𝑎𝑛+1 or the crack growth rate (𝑑𝑎 𝑑𝑁) 
𝑛+1

 at damage level n + 1. The (n + 1)
th

 

damage level distribution is obtained based on available input-output data up to the current 

damage level and future input parameter xn+1 . It is noted that the input xi at any fatigue damage 

level i is a vector and constitutes the various fatigue affecting parameters. In the Bayesian 

framework, the predictive distribution of a target can be found by conditioning the targets 

y0,......,yn−1,yn, yn+1 that are affected by the corresponding random inputs x0,......,xn−1,xn, xn+1. 

Now we can define a priori over the space of possible functions to model the target (crack length 

 

Figure 33. General Bayesian probabilistic framework 

for future step damage state forecasting 
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or crack growth rate) as  𝑓 𝑦 𝛼 , where α represents parameters that account of modeling 

uncertainties in the form of curve fitting. It is assumed that modeling the uncertainty parameters 

α can account for the effect of loading interaction (e.g., retardation effect) in addition to 

modeling uncertainties. A priori noise function 𝑓 𝜗 𝛽  can also be defined, where ϑ is some 

appropriate noise function that arises due to scatter in material micro structure and β is another 

set of hyperparameters used to model the uncertainty due to scatter. Now if the parameters α and 

β are known, the conditional probability can be expressed as 

𝑓 𝑦𝑛  {𝑥𝑖=1,…,𝑛 , 𝛼, 𝛽} =   𝑦𝑛  𝑥𝑖=1,…,𝑛 , 𝑦, 𝜗 𝑓 𝑦 𝛼 𝑓 𝜗 𝛽 𝑑𝑦𝑑𝜗                           (12) 

where yn = {y0, ......, yn−1, yn} and ϑ denotes the underlying function which corresponds to the 

target functions and noise due to microstructural scattering respectively. Since y0,......,yn−1, and yn 

are conditioned random variables in the observed set of targets, the conditional distribution of 

yn+1 can be written as follows 

𝑓 𝑦𝑛+1 𝐷 = {𝑥𝑖 , 𝑦𝑖}𝑖=1,…,𝑛 , 𝑥𝑛+1, 𝛼, 𝛽} =
𝑓 𝑦𝑛+1 𝑥𝑖=1,…,𝑛+1 ,𝑦,𝜗 

𝑓 𝑦𝑛  𝑥𝑖=1,…,𝑛 ,𝛼,𝛽 
                                (13) 

Damage prediction using data driven Gaussian Process (GP) approach 

 The expression given in Eq. 13 is accurate 

if there exists a ”linear dependence” between the 

two random variables xi and xj. However, in 

general for fatigue damage modeling, the input 

variables xi and xj may not have a linear 

relationship. The nonlinearity is more pronounced 

during the unstable and transient damage growth 

regime. As parameters, such as crack length and 

loading information, are introduced in the input 

space, the relation between input variables xi and 

xj becomes more complex. To avoid the 

nonlinearity problem, Gaussian process (GP) is 

used to map the nonlinear parameters into a high dimensional space, as shown in Figure 34. It is 

parameterized by a mean and a covariance function.  With state information available up to nth 

damage level, the predictive distribution at (n+1)
th

 damage level can be given as: 

P an+1, 𝐚𝐧 =
1

Z
exp⁡(−

(𝑎𝑛+1−𝑎 𝑛+1)2

2𝜎𝑎 𝑛+1
2 )                                                 (14) 

a n+1 = kT𝐊n
−1𝐚𝐧                                                                 (15) 

𝜎𝑎 𝑛+1

2 = 𝜅 − kT𝐊n
−1𝐚𝐧                                                              (16) 

where a n+1 is the predictive mean at the (n+1)th damage level, and σa n +1
 is the associated error 

variance of the prediction, 𝐊n  is the n × n kernel matrix for the vector an , κ and kT  are the 

partitioned components of kernel matrix.   

 For the future damage state prediction, the GP model given by Eq. 14-16 recursively 

predicts the future damage states based on the last on-line data available.  The training data set D 

and test input vector an+n  can be written as, 

 
Figure 34. Schematic of high-

dimensional transformation of input 

space.  
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D =
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                         (17) 

an+n =  an−d−1+n 
p

    an−d+n 
p

     an−d+1+n 
p

 
   ⋯    an−2+n   

p                             
test  input  data  vector

                                (18) 

where in Eqs.17  and 18, the subscript n is the damage level to which the last on-line data is 

available, the subscript n  is the damage level after the availability of the last on-line data and the 

superscript p indicates the predicted damage index. 

Hybrid prognosis model 

 Fatigue crack growth behavior for a given specimen can be predicted by combining 

knowledge of the underlying mechanics of crack growth and future loading. The hybrid 

prognosis framework presented in this paper considers simple crack growth models whose 

behaviors are inferred and updated using data-driven approaches. The combination of physics 

and data-driven approaches allows for the consideration of proper fracture mechanisms while 

correcting for material variations and uncertainty in the model parameters using data-driven 

model updating. Thus, although simple physics models are used, the accuracy of the hybrid 

framework is greater than those of data-driven and physics based models alone, as shown in the 

results presented in a later section.  

 Linear elastic fracture mechanics and most fracture theories state that the crack growth 

rate ( /da dN ) is a function of the stress intensity factor range ( K ), as shown in Eq. 19. 

 
 

da
f K

dN
 

 
(19) 

where, DK = K max-K min 

 Due to the exponential nature of 

crack growth, most models typically 

describe the relationship between crack 

growth rate and stress intensity factor 

(SIF) using log-log transforms. The 

commonly observed trend showing 

three critical zones, stages I-III of crack 

growth is shown in Figure 35. 

Prediction initiation in stage I can often 

result in large errors with respect to life 

since cracks can grow on the order of 

N
3
 or N

4
. Typically, prognosis 

algorithms are applied during stage II 

 
Figure 35. The relationship between crack growth 

rate and SIF is highly nonlinear even after log-log 

transform. There is a stable linear portion, indicated 

by the black line that is representative of Stage II or 

sub-critical crack growth.  
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or sub-critical crack growth and are used to predict ultimate fracture.  In some cases, for 

example, constant amplitude loading, this regime is linear. Models such as Paris‟ Law are well 

suited to capture this behavior. For cases such as overloads and under-loads, this regime can be 

highly nonlinear and discontinuous requiring the use of advanced physics models, which are 

often unavailable. In the hybrid prognosis framework presented here, the exact relationship 

between crack growth rate and SIF for a given cycle is inferred from the available data based on 

an assumption of a linear relationship with non-constant coefficients in log space. The constants 

of the linear fit are a function of historical crack growth data, future loading (i.e., 

overloads/under-loads), and basic material properties and cycles, continuously evolving and 

adapting, as more data are available. Initial estimates for these parameters (i.e., prior to data 

acquisition) can be obtained through the basic material constants used in Paris‟ Law, which 

reduces the crack growth rate estimation to a classical Paris‟ Law extrapolation. However, since 

the SHM framework provides data on crack length and locations, as well as load monitoring and 

cycle counting, the constants are updated, allowing them to model and capture the nonlinear and 

discontinuous behavior. In order to predict the fatigue crack growth of a specimen, Eq. 19 needs 

to be formulated in terms of measureable parameters and integrated until ultimate fracture.  

Therefore, the parameters in Eq. 19 must be written in terms of these data, requiring that SIF is 

related to known or quantifiable parameters. We assume that the SIF can be expressed as a 

general function  

                                  
 , ,N N NK f a P S 

                                                                
(20)

 
where, S is a geometric parameter. For simple structures, analytical expressions of SIF are 

available that describe its dependence on geometry, crack length, and applied load. When an 

analytical expression is available, it can then be directly substituted into Eq. 20 and the future 

crack growth can be calculated. However, in the absence of this information, numerical methods 

must be utilized to provide estimates of SIF.  Either method is acceptable and suitable for use in 

the proposed framework. The only model parameter necessary to apply the proposed prognosis 

model is the stress intensity factor (SIF). A SIF mapping can be created for any specimen as a 

function of the crack tip location. Finite element simulations can be run for different crack tip 

locations, which will, in turn, serve as the training data. A regression model can then be used to 

map the data, allowing for evaluation of the SIF for any given crack tip location obtained from 

the experiments.  

Experimental validation 

Validation using cruciform testing articles 

 To numerically validate the 

integrated prognosis algorithm, a fatigue test 

was performed on an Al-6061 cruciform 

specimen under biaxial loading. The loaded 

cruciform specimen in an MTS biaxial 

fatigue test frame can be seen in Figure 36. 

The specimen was subjected to constant 

amplitude fatigue loading with maximum 

amplitude (smax) 4 kips and load ratio of R 

= 0.1, and the biaxial machine actuator was 

operated with a frequency of 10 Hz. It 

should be noted that, the maximum stress 

 
Figure 36. Al-6061 cruciform specimen loaded 

in a MTS biaxial fatigue test frame. 
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amplitude was equal to two thirds the yield stress sY . Based on nonlinear finite element analysis 

of cruciform specimen, the yield stress was approximated as sY = 6kips. Also note that both the 

x-axis actuator and y-axis actuator of the biaxial frame were subjected to in-phase fatigue 

loading. For on-line state estimation, passive strain gauge sensors were used. Two strain gauges 

were mounted on the web area, one strain gauges mounted on the horizontal flange, and the other 

one on the vertical flange of the cruciform specimen. In addition, a hole in the center of the 

specimen was made to create crack initiation in the web area of cruciform specimen. To 

accelerate damage growth an EDM notch of 1 mm length was made at left bottom quadrant 

boundary of the central hole (45o to the vertical axis). A 48 channel NI PXI system was used to 

collect the strain gauge signals and the measurements from the biaxial machine load cells. In 

addition, a high resolution SONY camera was used to visually monitor the crack growth. The 

data acquisition system and the computer capturing the visual image were synchronized with the 

biaxial machine controller to collect the time synchronized data/ image at a specified interval of 

DN = 1500cycles. The data and image collection started at approximately 11 k cycles. The image 

and sensor data were collected at 47 

different time instances. For the first 

44 instances, the signals and images 

were collected while the biaxial 

machine was running and during the 

last three instances the data was 

collected when the machine was not 

running. This leads to a total of 44 

different damage cases with the last 

damage state occurring at 75.5 kcycles. 

 Figure 37 shows the 

comparison between single step ahead 

forecasted state and actual damage 

state (or damage index) with on-line 

data available up 

to the previous 

damage level. As 

seen in the figure, 

the prognosis 

algorithm starts 

predicting from 

estimated from 

the sensor signals. 

The threshold 

value of 0.7 is 70% 

of the final 

damage index 

value of one. The 

damage index 

reaches its final 

value of one 

when there is no 

 
Figure 37. One-step ahead damage state prediction 

using off-line predictive model. 

 

 
Figure 38. Multi-step ahead damage state prediction using off-line 

predictive model. 

 



30 

 

cross-correlation between the input u and y. This is because the specimen undergone complete 

failure. It should be noted that choosing the critical damage index value of 0.7 was based on the 

results from previously performed similar experiments. 

  Unlike the single step ahead prediction, the multi step ahead prediction recursively 

predicts the damage state multiple steps ahead of the damage level at which last online data was 

available. Figure 38 shows the multi step ahead state prediction. Similar to single step ahead 

prediction process, the prognosis algorithm was started after the 6th damage level (i.e. at 18.5 

kcycles). From the 7
th

 damage level (from 20 kcycles), damage indices were predicted and then 

fed back to the prognosis model to update the Gaussian process training data matrix and the test 

input vector. The feedback process and the corresponding future state predictions were continued 

recursively as long as the predicted damage index did not reach its critical value of 0.7. It is to be 

noted that unlike the single step ahead prediction, the training data matrix and the corresponding 

test input vector were updated with off-line model predicted states, rather than being updated 

with on-line model estimated states, which could not be available in real time. It can be seen 

from Figure 38 that, with on-line data available up to damage level 23 (at 44 kcycles), the multi 

step ahead predicted states fails to reach the critical value of 0.7. This is because the predictive 

model was unable to learn the damage growth dynamics. It is also to be noted that if the 

predictive model does not learn the damage growth dynamics it keeps on running with only 

predicting unvarying damage indices. The predicted unvarying damage indices time series can 

also be seen from the Figure 38. Without satisfying the threshold criteria, the prediction of 

unvarying damage indices could have continued indefinitely. However to reduce the 

computational expenses, the prognosis algorithm was stopped at certain times. The criteria for 

stopping the algorithm was if the rate of damage index growth was not greater than 1x10
-

7
=cycles for six consecutive damage levels, the off-line predictive model had to be terminated. 

This was because of physical reason, if the damage growth was slow enough, the predicted 

damage index, would never reach the critical value even if the algorithm had to run indefinitely. 

From Figure 10 it is also seen that, the first multi step ahead prediction curve, that reaches the 

critical value starts from damage level 24 (from 45.5 kcycles). Beyond this damage level, the 

multiple step ahead prediction increasingly converges with the actual damage index. From the 

above mentioned observations, it can be assumed that the prediction horizon (or the true positive 

regime) was between damage level 24 (45.5 kcycles) and damage level 42 (72.5 kcycles), during 

which, the predicted damage 

states reached its critical 

value. 

 The residual useful 

life at any given damage 

level (up to which the last 

online data was available) 

was estimated. Figure 11 

shows the comparison of 

predicted RULE and actual 

RULE. From the figure it 

can be seen that, there is a 

good correlation between 

predicted and actual RULE 

in the true positive regime 
 

Figure 39. Comparison of predicted RULE and actual RULE. 
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i.e., between 45.5 kcycles and 72.5 kcycles. Also as more and more online data becomes 

available, better correlation between predicted RULE and actual RULE is observed.  

Validation using lug joint test articles 

 For the validation of the method on a real-time specimen, an Aluminum 2024-T351 lug 

joint subjected to fatigue loading was instrumented and interrogated. The experimental setup is 

the same as reported in last two sections. To track the crack growth, two cameras were mounted 

on to the frame, each focusing on the crack on the front and rear of the specimen. The captured 

images were used to calculate the crack length.  

In order to evaluate the stress intensity factor (SIF), a finite element simulation was run 

using Abaqus. A full 3D finite element model of the lug joint was created in Abaqus. The crack 

propagation direction was considered as normal to the crack front plane for the SIF calculation. 

 
Figure 40. Finite element model of the lug joint with crack 

 A grid of 15mm x 25mm was made at one shoulder of the lug joint, and the crack tip was 

modeled for 17 different locations on the grid. The left pinhole on the lug joint was fixed in all 

directions, and the right pinhole was allowed to move along the direction of the loading. The  

SIF was calculated with a load of 13kN. It was also observed that the SIF varies linearly with 

loading. It is noted that for the first crack tip location (109.00, 79.50), as the load reduces 10 

times, the SIF also reduces to 1/10
th

 of the original value. For the crack tip location (104.00, 

79.50), as the load reduces by ½, the SIF also reduces by ½. And, for the crack tip location 

(113.16, 84.53), as the load reduces by 1/4
th

, the SIF also reduces by 1/4
th

. These observations 

indicate that the SIF varies linearly with the load. Hence, for any given loading, the SIF can be 

calculated as a linear function of the load. In our experiments, the SIF (K) was calculated for unit 

load. Then, for any given loading, the calculated SIF was multiplied by the load to get the new 

SIF for that particular load. From this process, we are able to find the SIF as a function of the 

crack tip location for different loads. After the SIF was evaluated, a mapping for the SIF was 

created as a function of the crack tip location. Once the mapping was created, the SIF can be 

evaluated from the mapping for any obtained crack tip location during the experiment. To create 

a mapping of the SIF, three methods were used. First, the mapping was created using the surface 

fitting toolbox in MATLAB, and then using LASSO, and then using RVM. The first two 

methods are deterministic, whereas RVM is a probabilistic method, which provides the 

confidence intervals of the prediction.  

SIF mapping using RVM 

 For the SIF mapping using RVM, the  input parameters are the crack tip coordinates (x, 

y), and the output parameter is the SIF for a given crack tip location. While the LASSO is a 

useful tool for robust regression, it yields a point estimate for the regressed model. RVM is a 

powerful technique that can perform full probabilistic regression, and it has the advantage of 

additionally providing a measure of uncertainty (confidence intervals) on the regressed estimate. 

Thus, using the RVM for the SIF mapping, a probability distribution on the SIF as a function of 
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x and y position can be 

obtained. In this setting, 

the uncertainty in SIF can 

be transferred naturally to 

uncertainty in crack 

growth rate, for 

subsequent use in the 

prognosis model. In our 

evaluation, the inputs 

used included 17 data 

points, and the 

predictions were plotted 

on a grid of 

201x301=60501 data points. For each of the 60501 grid points, a lower bound and an upper 

bound were established, which can be related to the variance of the prediction. The input data 

was mapped with RVM using a Gaussian kernel, and the obtained fit, with lower bound and 

upper bound surfaces, is shown in Figure 41. The surfaces were plotted with a variance of 2. 

For this set of input and output data, Gaussian kernel was observed as providing good results; 

hence this kernel was used for the mapping.  

  

 
Figure 41. Plot of surface fit using RVM.                       
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of compressive sensing for integrated structural health management,” Conference on 

Intelligent Data Understanding, Mountain View, CA, October 2010. 

46. Kim, M., Butrym, B., Afshari, M., Inman, D. J., “Fatigue Life Estimation of Structural 

Components Using MFC Sensors,” invited presentation, EMA 2010, Orlando, FL, January 

2010. 

47. Afshari, M., Butrym, B. A., and Inman, D. J., “Quantify Temperature Effects on Crack Size 

Studies in Metallic Structures using Vibration-based Health Monitoring,” to appear in the 

ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems 

(SMASIS2010), Philadelphia, PA, September 2010. 

48. Afshari, M., Marquié, T., and Inman, D.J., “Automated Structural Health Monitoring of 

Bolted Joints in Railroad Switches,” Proceedings of ASME 2009 Rail Transportation 

Division Fall Conference (RTDF2009), Fort Worth, TX, Oct. 2009. 

49. Afshari, M., Butrym, B. A., and Inman, D. J., “On Quantifying Detectable Fatigue Crack 

Size in Aluminum Beams Using Vibration and Impedance-based Methods,” Proceedings of 

the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent 

Systems (SMASIS2009), Oxnard, CA, Sept. 2009.  

50. Mohanty, S., Wei, J, Chattopadhyay, A., and Peralta, P., “On-line Time Series Damage State 

Estimation Using Correlation Analysis and Ultrasonic Broadband Active Sensing, 

Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and 

Intelligent Systems (SMASIS2009), Oxnard, CA, Sept. 2009.  

51. Soni, S., Das, S., and Chattopadhyay, A., “Optimal Sensor Placement for Damage Detection 

in Complex Structures,” Proceedings of the ASME 2009 Conference on Smart Materials, 

Adaptive Structures and Intelligent Systems (SMASIS2009), Oxnard, CA, Sept. 2009.  

52. Afshari, M., Park, S., and Inman, D. J., “The Early Stage Crack Detection using Non-Linear 

Feature Extraction of the Self-Sensing Piezoelectric Impedance Measurements,” 

Proceedings of the 7th International Workshop on Structural Health Monitoring 2009, 

Stanford, CA, Sept. 2009. 

53. Dodson, J., Inman, D. J, and Foley, J., “SHM of an Impulsively Loaded Structure  

Using a Wave-Propagation Based Instantaneous Baseline,” Proceedings SPIE Smart 

Structures/NDE, San Diego, CA, March 2010. 

54. Soni, S., Kim, S. B., and Chattopadhyay, A., “Reference Free Fatigue Crack Detection, 

Localization and Quantification in Lug Joints,” 51st AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, April 2010. 

55. Soni, S., Kim, S. B., and Chattopadhyay, A., “Fatigue Crack Detection and Localization 

using Reference-free Method,” Proceedings of SPIE, March 2010. 

56. Mohanty, S., Chattopadhyay, A., Peralta, P., and Quach, D., “Fatigue Damage Prognosis of 

a Cruciform Structure under Biaxial Random and Flight Profile Loading”, Proceedings of 

SPIE, March 2010. 
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57. Soni, S., Das, S., and Chattopadhyay, A., “Optimal Sensor Placement for Damage Detection 

in Complex Structures,” ASME Conference on Smart Materials, Adaptive Structures and 

Intelligent Systems, September 2009. 

58. Zhou, W., Kovvali, N., Papandreou-Suppappola, A., and Chattopadhyay, A., “Sensor 

Optimization for Progressive Damage Diagnosis in Complex Structures,” SPIE Smart 

Structures and Materials & Nondestructive Evaluation and Health Monitoring Conference, 

San Diego, CA, March 2010. 

59. Chakraborty, D., Kovvali, N., Papandreou-Suppappola, A., and Chattopadhyay, A., “Active 

Learning Data Selection for Adaptive Online Structural Damage Estimation,” SPIE Smart 

Structures and Materials & Nondestructive Evaluation and Health Monitoring Conference, 

San Diego, CA, March 2010. 

60. Chakraborty, D., Kovvali, N., Zhang, J., Papandreou-Suppappola, A., and Chattopadhyay, 

A., “Adaptive Learning for Damage Classification in Structural Health Monitoring,” 

Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 

2009. 

61. Zhang, J., Zhou, W., Kovvali, N., Papandreou-Suppappola, A., and Chattopadhyay, A., “On 

the Use of the Posterior Cramér-Rao Lower Bound for Damage Estimation in Structural 

Health Management,” ASME Conference on Smart Materials, Adaptive Structures and 

Intelligent Systems, Oxnard, CA, September 2009. 

62. Zhou, W., Kovvali, N., Papandreou-Suppappola, A., Peralta, P., and Chattopadhyay, A., 

“Progressive Damage Estimation using Sequential Monte Carlo Techniques,” International 

Workshop on Structural Health Monitoring, Stanford, CA, Sept. 2009. 

63. Mohanty, S., and Chattopadhyay, A., “Time Series Damage State Estimation Using 

Empirical Transfer Function Estimation Approach and Broadband Chirp Active Sensing,” 

International Workshop on Structural Health Monitoring, Stanford, CA, Sept. 2009. 

64. Villarreal, T., Atodaria, I., Peralta, P., and Chattopadhyay, A., “Effects of microstructural 

and mechanical length scales on fatigue crack propagation in beta-annealed Ti-6Al-4V,” 

TMS Annual Meeting, Seattle, WA, Feb. 2010. 

65. Kim, S. B., Liu, K., Chattopadhyay, A., “Application of a Hybrid PZT Actuation/FBG 

Sensor System to Detect Delamination in a Carbon Fiber Stiffened Panel,” Proceeding of 

IWSHM, International Workshop on Structural Health Monitoring, September 13-15, 2011, 

Stanford, CA, USA. 

66. Coelho, C. K., Kim, S. B., and Chattopadhyay, A., “Optimal sensor placement for active 

guided wave interrogation of complex metallic components,” Proc. SPIE 7981, 2011, 

79813O-10. 

67. Mohanty, S., Chattopadhyay, A., Rajadas, J. N., Coelho, C. K., “Dynamic Strain Mapping 

and Real-Time Damage State Estimation Under Biaxial Random Fatigue Loading,” ASME 

2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 

September 2011, Scottsdale, Arizona, USA 

68. Mohanty, S., Chattopadhyay, A., Peralta, P., Quech, D., “Fatigue damage prognosis of a 

cruciform structure under biaxial random and flight profile loading,” Proceedings Vol. 7649, 

Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil 

Infrastructure, and Homeland Security, 2010 

69. W. Zhou, N. Kovvali, A. Papandreou-Suppappola, A. Chattopadhyay, and P. Peralta, 

“Adaptive Measurement Selection for Progressive Damage Estimation”, Proc. of SPIE, vol. 

7981, p. 798127, 2011. 
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70. D. Chakraborty, N. Kovvali, B. Chakraborty, A. Papandreou-Suppappola, and A. 

Chattopadhyay, “Structural Damage Detection with Insufficient Data using Transfer 

Learning Techniques”, Proc. of SPIE, vol. 7981, p. 798147, 2011. 

71. Hensberry, K., Kovvali, N., Liu, K.C., Chattopadhyay, A., and Papandreou-Suppappola, A., 

"Guided Wave Based Fatigue Crack Detection and Localization in Aluminum Aerospace 

Structures," Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive 

Structures and Intelligent Systems (SMASIS), Stone Mountain, GA, September 2012. 

72. J. Zhang, C. Luo and A. Chattopadhyay, A study of fatigue life prediction in metallic 

materials based on statistical volume elements, AIAA 53rd AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference, April 23-26,2012, Honolulu, 

Hawaii, USA 

73. J Zhang, K. Liu ad A. Chattopadhyay, Fatigue life prediction under biaxial FALSTAFF 

loading using statistical volume element based multiscale modeling, Proceedings of the 

ASME 2012 International Mechanical Engineering Congress & Exposition, November 9-15, 

2012, Houston, Texas, USA 

74. Neerukatti, R., Liu, K.C.,  Liu, Y., and Chattopadhyay, A., “Fatigue life prediction using 

hybrid prognosis for structural health monitoring,”  Proceedings of the 2012 AIAA 

Infotech@Aerospace Conference, June 19-21, Hyatt Regency Orange County, Garden 

Grove, CA, USA, 2012. 
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5. Interactions/Transitions 

1.  Live demonstration of structural health monitoring techniques for Office of Naval Research 

in West Bethesda, MD, 2011.  

2.  A. Chattopadhyay, invited speaker, ISHM workshop at AFRL, NM, 2011.  

3.  A. Chattopadhyay, invited speaker, UTRC Fellows Forum, East Hartford, CT, 2011.  

4.  Prospective collaboration visit to AIMS Center by Pratt & Whitney Rocketdyne, 2011.  

5.  A. Chattopadhyay, invited speaker, NAVAIR, Aberdeen, MD, 2011.  

6.  A. Makas, I. Atodaria, R. MacKinnon, P. Peralta, and A. Chattopadhyay, “Effects of Rolling 

Induced Anisotropy on Fatigue Crack Initiation and Short Crack Propagation in Al 2024-

T351 Under Uniaxial and Biaxial States of Stress.” 2011 TMS Annual Meeting. San Diego, 

CA, March 2011.  

7.  A. Makas, I. Atodaria, R. MacKinnon, P. Peralta, and A. Chattopadhyay, “Effects of Rolling 

Induced Anisotropy on Fatigue Crack Initiation and Short Crack Propagation in Al 2024-

T351 Under Uniaxial and Biaxial States of Stress.” SPIE 2011 Meeting. San Diego, CA, 

March 2011.  

8.  Appeared on NOVA, http://www.pbs.org/wgbh/nova/tech/making-stuff-smarter.html, Feb 

19, 2011.  

9. Organizer, AFOSR/AFRL Workshop on Improved Precision for Space Systems, Kirtland 

Air Force Base, NM, 27-28 May 2010  

10. Briefing to US Congressional Subcommittee: "Harvesting Waste Mechanical and Thermal 

Energy to Power Small Electronics", Congressional Briefing to the US House Committee on 

Science and Technology, Subcommittee on Energy and Environment, October 6, 2010, 

Rayburn Building, Washington, DC.  

11. Inman, D. J., “An Overview of Smart Technologies,” Institute of Mechanical Engineers 

Smart Technologies - Clever Thinking for Structures and Materials Conference, University 

of Bristol, Bristol, UK, 16 September 2010. (Keynote Address)  

12. Inman, D. J., "Harvesting Waste Mechanical and Thermal Energy to Power Small 

Electronics", Congressional Briefing to the US House Committee on Science and 

Technology, Subcommittee on Energy and Environment, October 6, 2010, Rayburn 

Building, Washington, DC. (Invited Lecture)  

13. Inman, D. J, “Towards Autonomic Structures”, IDGA‟s 10th Lightweight Materials for 

Defense Conference, December 7, 2010, Arlington, VA. (Keynote Address)  

14. Inman, D. J., “Comments on the NIST TIP Program: Harvesting and SHM,” 2011 National 

Science Foundation‟s BSF CMMI Research and Innovation Conference, January 4-7, 2011, 

Atlanta, GA. (Invited Lecture)  

15. Ghanem, R., “V&V or a psychoanalysis of predictions,” European Conference on 

Computational Mechanics, Paris, France, May 16-21, 2010.  

16. Ghanem, R., organizer, a workshop on Stochastic Multiscale Methods at the Banff 

International Research Station (BIRS) from March 27-April 1, 2011.  

17. Ghanem, R., participated in and presented at an AFOSR/NSF workshop on the future of 

multiscale methods in Arlington, on April 8 2011.  

18. Ghanem, R., invited speaker, IMA (Institute for Mathematics and its Application) on UQ for 

Industrial Applications and UQ for Large-Scale Inverse Problems  

19. Ghanem, R., invited speaker, IPAM (Institute for Pure and Applied Mathematics)  
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